A Observation

Observational astronomers use telescopes or other instruments to observe the heavens. The astronomers who do the most observing, however, probably spend more time using computers than they do using telescopes. A few nights of observing with a telescope often provide enough data to keep astronomers busy for months analyzing the data. A 1 Optical Astronomy Until the 20th century, all observational astronomers studied the visible light that astronomical objects emit. Such astronomers are called optical astronomers, because they observe the same part of the electromagnetic spectrum that the human eye sees. Optical astronomers use telescopes and imaging equipment to study light from objects. Professional astronomers today hardly ever actually look through telescopes. Instead, a telescope sends an object’s light to a photographic plate or to an electronic light-sensitive computer chip called a charge-coupled device, or CCD. CCDs are about 50 times more sensitive than film, so today's astronomers can record in a minute an image that would have taken about an hour to record on film. Telescopes may use either lenses or mirrors to gather visible light, permitting direct observation or photographic recording of distant objects. Those that use lenses are called refracting telescopes, since they use the property of refraction, or bending, of light (see Optics: Reflection and Refraction). The largest refracting telescope is the 40-in (1-m) telescope at the Yerkes Observatory in Williams Bay, Wisconsin, founded in the late 19th century. Lenses bend different colors of light by different amounts, so different colors focus slightly differently. Images produced by large lenses can be tinged with color, often limiting the observations to those made through filters. Filters limit the image to one color of light, so the lens bends all of the light in the image the same amount and makes the image more accurate than an image that includes all colors of light. Also, because light must pass through lenses, lenses can only be supported at the very edges. Large, heavy lenses are so thick that all the large telescopes in current use are made with other techniques. Reflecting telescopes, which use mirrors, are easier to make than refracting telescopes and reflect all colors of light equally. All the largest telescopes today are reflecting telescopes. Among the largest single telescopes are the Keck telescopes at Mauna Kea Observatory in Hawaii. The Keck telescope mirrors are 394 in (10.0 m) in diameter. Mauna Kea Observatory, at an altitude of 4,205 m (13,796 ft), is especially high. The air at the observatory is very clear, so many major telescope projects are located there. The Hubble Space Telescope (HST), a reflecting telescope that orbits Earth, has returned some of the clearest images of any optical telescope. The main mirror of the HST is only 94 in (2.4 m) across, far smaller than that of the largest ground-based reflecting telescopes. Turbulence in the atmosphere makes observing objects as clearly as the HST can see impossible for ground-based telescopes. HST images of visible light are about five times finer than any produced by ground-based telescopes. Giant telescopes on Earth, however, collect much more light than the HST can. Examples of such giant telescopes include the twin 32-ft (10-m) Keck telescopes in Hawaii and the four 26-ft (8-m) telescopes in the Very Large Telescope array in the Atacama Desert in northern Chile (the nearest city is Antofagasta, Chile). Often astronomers use space- and ground-based telescopes in conjunction. See also Space Telescope. A 1 Optical Astronomy Until the 20th century, all observational astronomers studied the visible light that astronomical objects emit. Such astronomers are called optical astronomers, because they observe the same part of the electromagnetic spectrum that the human eye sees. Optical astronomers use telescopes and imaging equipment to study light from objects. Professional astronomers today hardly ever actually look through telescopes. Instead, a telescope sends an object’s light to a photographic plate or to an electronic light-sensitive computer chip called a charge-coupled device, or CCD. CCDs are about 50 times more sensitive than film, so today's astronomers can record in a minute an image that would have taken about an hour to record on film. Telescopes may use either lenses or mirrors to gather visible light, permitting direct observation or photographic recording of distant objects. Those that use lenses are called refracting telescopes, since they use the property of refraction, or bending, of light (see Optics: Reflection and Refraction). The largest refracting telescope is the 40-in (1-m) telescope at the Yerkes Observatory in Williams Bay, Wisconsin, founded in the late 19th century. Lenses bend different colors of light by different amounts, so different colors focus slightly differently. Images produced by large lenses can be tinged with color, often limiting the observations to those made through filters. Filters limit the image to one color of light, so the lens bends all of the light in the image the same amount and makes the image more accurate than an image that includes all colors of light. Also, because light must pass through lenses, lenses can only be supported at the very edges. Large, heavy lenses are so thick that all the large telescopes in current use are made with other techniques. Reflecting telescopes, which use mirrors, are easier to make than refracting telescopes and reflect all colors of light equally. All the largest telescopes today are reflecting telescopes. Among the largest single telescopes are the Keck telescopes at Mauna Kea Observatory in Hawaii. The Keck telescope mirrors are 394 in (10.0 m) in diameter. Mauna Kea Observatory, at an altitude of 4,205 m (13,796 ft), is especially high. The air at the observatory is very clear, so many major telescope projects are located there. The Hubble Space Telescope (HST), a reflecting telescope that orbits Earth, has returned some of the clearest images of any optical telescope. The main mirror of the HST is only 94 in (2.4 m) across, far smaller than that of the largest ground-based reflecting telescopes. Turbulence in the atmosphere makes observing objects as clearly as the HST can see impossible for ground-based telescopes. HST images of visible light are about five times finer than any produced by ground-based telescopes. Giant telescopes on Earth, however, collect much more light than the HST can. Examples of such giant telescopes include the twin 32-ft (10-m) Keck telescopes in Hawaii and the four 26-ft (8-m) telescopes in the Very Large Telescope array in the Atacama Desert in northern Chile (the nearest city is Antofagasta, Chile). Often astronomers use space- and ground-based telescopes in conjunction. See also Space Telescope. Astronomers usually share telescopes. Many institutions with large telescopes accept applications from any astronomer who wishes to use the instruments, though others have limited sets of eligible applicants. The institution then divides the available time among successful applicants and assigns each astronomer an observing period. Astronomers can collect data from telescopes remotely. Data from Earth-based telescopes can be sent electronically over computer networks. Data from space-based telescopes reach Earth through radio waves collected by antennas on the ground. A 2 Gamma-Ray and X-Ray Astronomy Gamma rays have the shortest wavelengths. Special telescopes in orbit around Earth, such as the National Aeronautics and Space Administration’s (NASA’s) Compton Gamma-Ray Observatory and the Fermi Gamma-Ray Space Telescope, have been able to gather gamma rays before Earth’s atmosphere absorbs them. X rays, the next shortest wavelengths, also must be observed from space. NASA’s Chandra X-Ray Observatory (CXO) is a school-bus-sized spacecraft that began studying X rays from orbit in 1999. See also Gamma-Ray Astronomy; X-Ray Astronomy. A 3 Ultraviolet Astronomy Ultraviolet light has wavelengths longer than X rays, but shorter than visible light. Ultraviolet telescopes are similar to visible-light telescopes in the way they gather light, but the atmosphere blocks most ultraviolet radiation. Most ultraviolet observations, therefore, must also take place in space. Most of the instruments on the Hubble Space Telescope (HST) are sensitive to ultraviolet radiation (see Ultraviolet Astronomy). Humans cannot see ultraviolet radiation, but astronomers can create visual images from ultraviolet light by assigning particular colors or shades to different intensities of radiation. A 4 Infrared Astronomy Infrared astronomers study parts of the infrared spectrum, which consists of electromagnetic waves with wavelengths ranging from just longer than visible light to 1,000 times longer than visible light. Earth’s atmosphere absorbs infrared radiation, so astronomers must collect infrared radiation from places where the atmosphere is very thin, or from above the atmosphere. Observatories for these wavelengths are located on certain high mountaintops or in space (see Infrared Astronomy). Most infrared wavelengths can be observed only from space. Every warm object emits some infrared radiation. Infrared astronomy is useful because objects that are not hot enough to emit visible or ultraviolet radiation may still emit infrared radiation. Infrared radiation also passes through interstellar and intergalactic gas and dust more easily than radiation with shorter wavelengths. Further, the brightest part of the spectrum from the farthest galaxies in the universe is shifted into the infrared. The James Webb Space Telescope is designed to observe over a wide spectrum of infrared radiation. A 5 Radio Astronomy Radio waves have the longest wavelengths. Radio astronomers use giant dish antennas to collect and focus signals in the radio part of the spectrum (see Radio Astronomy). These celestial radio signals, often from hot bodies in space or from objects with strong magnetic fields, come through Earth's atmosphere to the ground. Radio waves penetrate dust clouds, allowing astronomers to see into the center of our galaxy and into the cocoons of dust that surround forming stars. 6 Study of Other Emissions Sometimes astronomers study emissions from space that are not electromagnetic radiation. Some of the particles of interest to astronomers are neutrinos, cosmic rays, and gravitational waves. Neutrinos are tiny particles with no electric charge and very little or no mass. All stars emit neutrinos, but neutrino detectors on Earth receive neutrinos only from the Sun and supernovas. Most neutrino telescopes consist of huge underground tanks of liquid. These tanks capture a few of the many neutrinos that strike them, while the vast majority of neutrinos pass right through the tanks. See Neutrino Astronomy. Cosmic rays are electrically charged particles that come to Earth from outer space at almost the speed of light. They are made up of negatively charged particles called electrons and positively charged nuclei of atoms. Astronomers do not know where most cosmic rays come from, but they use cosmic-ray detectors to study the particles. Cosmic-ray detectors are usually grids of wires that produce an electrical signal when a cosmic ray passes close to them. Most often cosmic rays are detected by showers of subatomic particles that result when a high-energy cosmic ray strikes an atom high in Earth’s atmosphere. Gravitational waves are a predicted consequence of the general theory of relativity developed by German-born American physicist Albert Einstein. Since the 1960s astronomers have been building detectors for gravitational waves. Older gravitational-wave detectors were huge instruments that surrounded a carefully measured and positioned massive object suspended from the top of the instrument. Lasers trained on the object were designed to measure the object’s movement, which theoretically would occur when a gravitational wave hit the object. No gravitational waves have yet been detected. Gravitational waves should be very weak, and instruments need to be extremely sensitive to register them. In the 1970s and 1980s American physicists Joseph Taylor and Russell Hulse observed indirect evidence of gravitational waves by studying systems of double pulsars. A new generation of gravitational-wave detectors, developed beginning in the 1990s, uses interferometers to measure distortions of space that would be caused by passing gravitational waves. Some objects emit radiation more strongly in one wavelength than in another, but a set of data across the entire spectrum of electromagnetic radiation is much more useful than observations in any one wavelength. For example, the supernova remnant known as the Crab Nebula has been observed in every part of the spectrum, and astronomers have used all the discoveries together to make a complete picture of how the Crab Nebula is evolving.

0 comment/s:

Post a Comment


NEWS--Researchers have reconstructed atmospheric carbon dioxide levels over the past 2.1 million years in the sharpest detail yet, shedding new light on its role in the earth's cycles of cooling and warming. A first-ever analysis and comparison of the carbon footprints of different countries using a single, trade-linked model has been created by researchers at the Norwegian University of Science and Technology (NTNU) and the Centre of International Climate and Environment Research - Oslo (CICERO). ScienceDaily (June 22, 2009) — Some of the substances that are helping to avert the destruction of the ozone layer could increasingly contribute to climate warming, according to scientists from NOAA's Earth System Research Laboratory and their colleagues in a new study in the journal Proceedings of the National Academy of Sciences.